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PERC Overview

An “Integrated Software Infrastructure Center” (ISIC)  
sponsored under DoE’s SciDAC program.

Funding: approx. $2.4 million per year.

Mission:  
Develop a science of performance.

Engineer tools for performance analysis and optimization.

Focus:
Large, grand-challenge calculations, especially large-scale    

scientific codes used in SciDAC projects.



Specific Objectives

Understand key factors in scientific codes that affect 
performance.

Understand key factors in computer systems that affect
performance.

Develop models that accurately predict performance of
codes on systems.

Develop an enabling infrastructure of tools for 
performance monitoring, modeling and optimization.

Validate these ideas and infrastructure via close
collaboration with DOE Office of Science and others.

Transfer the technology to end users.



Economic Benefits

Consider the economic value of improving the performance 
of a single high-end scientific application code by 20%.

Assume:

$10 million computer system lease cost per year.

$10 million per year in site costs, support staff, etc.

10-year lifetime of code.

Code uses 5% of system cycles each year.

Savings:  $2,000,000.

Scientific benefit (additional computer runs and research) is 
probably much higher.



Quantitative Feedback
to Vendors

We are invited by vendors to provide guidance on the
design of current and future systems.

BUT

At present we can provide only vague information – little if
any quantitative data or rigorous analysis.

The performance monitoring and modeling capability being 
developed in PERC will significantly improve our ability to 
influence future scientific computer systems.



Four Thrusts

Better Benchmarks:
Kernel benchmarks extracted from real codes reduce
complexity of analyzing full-size benchmarks.
Low-level benchmarks measure key rates of data access at
various levels of memory hierarchy.

Modern performance monitoring tools:
Flexible instrumentation systems capture hardware and
software interactions, instruction execution frequencies,
memory reference behavior, and execution overheads.
An advanced data management infrastructure tracks
performance experiments and data across time and space.



Four Thrusts, cont.

Performance modeling:
Application signature tools characterize applications
independent of the machine where they execute.

Machine signature tools characterize computer systems,
independent of the applications.

Convolution tools combine application and machine
signatures to provide accurate performance models.

Statistical models find approximate performance models
based on easily measured performance data.

Performance bound tools determine ultimate potential of an
application on a given system.



Four Thrusts, cont.

Performance optimization:
Compile-time optimization mechanisms analyze source 
code to improve performance.

Self-tuning software automatically tunes code based on
real-time measurements of hardware environment.

Performance assertions permit user-specified run-time tests
to possibly change the course of the computation
depending on results. 

Performance portability programming techniques to insure
that code runs at near-optimal performance across a variety
of modern systems.



Partnerships with SciDAC 
Scientific Projects

Terascale Simulation of Neutrino-Driven Supernovae
Advanced Computing for 21st Century Accelerators
National Computational Infrastructure for Lattice 
Gauge Theory
Collaborative Design and Development of Community 
Climate System Model for Terascale Computers
Numerical Computation of Wave-Plasma Interactions
The Plasma Microturbulence Project
Terascale Optimal PDE Solvers



Memory Access Patterns 
(MAPS)



Performance Model Vs 
Actual

0.7952.4652.88128

3.5247.1548.8796

2.2343.9144.9164

6.6733.7236.138

7.5731.2729.074

0.1331.8231.782

% ErrorPredicted TimeReal Time# CPUs

PETSc kernel, run on IBM SP at SDSC.



SvPablo Graphical 
Interface



PAPI Perfometer Interface



AORSA3D was ported and benchmarked on IBM and Compaq platforms. A
detailed performance analysis has begun using SvPablo and PAPI. The results  
below are for a 400 Fourier mode run on 16 processors and 1 node of an IBM SP 
(Nighthawk II / 375MHz).

Performance Analysis
AORSA3D (fusion)
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Performance for ZGemm
Denisty of Mem Access 1
Denisty of FLOPs 1.8
MFLOP/s 664
L1 cache hit rate 0.98
L2 cache hit rate 0.96
TLB misses 285034



Aggregate performance measures 
over all tasks for a .1 simulation-
second run. Collected with PAPI on 
an IBM SP (Nighthawk II / 375MHz).
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Performance Analysis
EVH1 (high-energy physics)



Analysis and Tuning
EVH1 (high-energy physics)

It was found that for more than 64 processors, EVH1 is communication-bound.  
The predominant routine (>50% of execution time) at this scale is 
MPI_ALLTOALL, which is used in matrix-transpose-like operations.

The current implementation uses a 1D decomposition for the matrix-array;
a modeling and analysis study has shown that a 2D decomposition would
result in a large improvement.  Benchmarking and analysis results are below.
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In studies with PCTM, we examined the impact of different domain
decompositions, as well as using fewer MPI processes per SMP node.  These studies
indicated a strong performance dependence on message-passing performance, where
using 64 MPI processes on 32 4-way 
SMP nodes (leaving 64 processors idle) 
was 30% faster than when running on 
16 SMP nodes.    

PCTM Simulation Years per Day
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Performance Analysis
PCTM (climate modeling)



Analysis and Tuning 
CAM (atmospheric modeling)

CAM performance measurements on IBM 
p690 cluster (and other platforms) were used 
to direct development process.  Graph shows 
performance improvement from performance 
tuning and recent code modifications.

Profile of current version of CAM  indicates that 
improving the serial performance of the physics 
is the most important optimization for small 
numbers of processors, and introducing a 2D 
decomposition of the dynamics (to improve 
scalability) is the most important optimization for 
large numbers of processors.



Working with PERC

Benchmarking
Application group works with PERC to specify relevant 
benchmark codes and problems.

PERC characterizes performance, generates performance 
models, and suggests optimizations.

Performance Tools
PERC trains application developers to use tools.

Application group uses tools in development, providing 
feedback on functionality and future development

For further information:   http://perc.nersc.gov
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